
Activity Based Gaming: Multiplayer Games

Sarang Aravamuthan (sarang@alumni.iitm.ac.in)

In an earlier article [1], I had described a procedure for converting any activity into a two-player

game provided that

1. The activity can be completed in a finite number of steps and

2. With each possible completion, we can associate a (numeric) value.

The players MAX and MIN take turns to complete the activity but with contrasting goals of

maximizing and minimizing the final value. Then, under optimal play from both players, the final

value evaluates to what we call the minimax value of the game (hereafter denoted by 𝕄). Under

normal play, the final value is compared with 𝕄 to decide the winner.

The figure above illustrates the different scenarios under which MAX or MIN can win. In

particular, MAX (MIN) wins when the final value is larger (resp. smaller) than 𝕄.

As an example of an activity, consider evaluating the arithmetic expression

𝑓(𝑋, 𝑌, 𝑍) = 𝑋(𝑌 − 𝑍).

MAX and MIN want to maximize (resp. minimize 𝑓). Towards this end MAX proposes digits

(0— 9) that MIN substitutes for a (un-instantiated) variable of her choice. The activity is

completed when all variables are instantiated and the value on completion is the value of 𝑓.

For example, one possible sequence of moves is

1. MAX proposes 4 which MIN substitutes for Y

2. MAX proposes 2 which MIN substitutes for Z

3. MAX proposes 3 which MIN substitutes for X

leading to the final value 𝑓(3, 4, 2) = 6.

What’s 𝕄 here? If MAX starts by proposing a high number then MIN would substitute that for Z

making the expression small. On the other hand, a low choice would be substituted for X. After

some trial and error, the reader can convince herself that 𝕄 = 18. In the example above, MIN

wins since 6 < 18.

Let’s pause to consider what we mean by optimal play and minimax value. Informally 𝕄 is the

best outcome that MAX (and MIN) can hope for i.e. for any 𝑣 > 𝕄, MIN has a strategy that

ensures that the final value < 𝑣. Similarly for any 𝑣 < 𝕄, MAX has a strategy that ensures that

the final outcome > 𝑣.

𝕄 MAX wins MIN wins

https://en.wikipedia.org/wiki/Minimax

𝕄 is evaluated by tracing the states of the game through a game tree (a sample tree is shown

below) and using the minimax algorithm. This is computationally intractable even for games of

moderate complexity; see [1] and [2] for more details and further examples of two-player games.

A (partial) game tree for the expression 𝒇(𝑿, 𝒀) = (𝟏𝟎 − 𝑿)𝒀. Each node is labeled with the
sequence of moves leading to that position and the minimax value under optimal play from

thereon.

Here are a few other aspects of two-player games.

1. An analogy: We can interpret a two-player game as the mental analogue of the classical

game of Tug-of-war with 𝕄 playing the role of the center line. The players pull the

activity value towards their side with all their computational might and the winner is

determined by which side of 𝕄 the final value falls in.

2. First play: A noteworthy aspect of using this rule to define the winner is that it negates

the first player advantage provided by some games such as chess. If the final value at

the completion of game is above average (i.e. skewed towards the max), then this is

encoded in a higher minimax value and MAX has to score higher than this to win.

3. A minimax interpretation of chess: Interestingly, the game of chess can also be placed in

a minimax setting. Here the activity is the removal of a king (of either color) and the

https://en.wikipedia.org/wiki/Game_tree
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Tug_of_war

value at completion of the activity is the parity of the number of moves, i.e. 1 if the black

king is removed and 0 otherwise. Thus MAX and MIN, who move white and black pieces

respectively, play to ensure that the game ends on their move. To consider drawn

situations (such as only kings left on board), we need to put a limit on the number of

moves and if the activity exceeds this limit then we terminate it with a value of 0.5. But

the big question here is “what’s 𝕄”? Conventional wisdom suggests that 𝕄 = 1 since

white is believed to have a slight advantage. However if this is proved (which seems

improbable considering the complexity of the game), then under the minimax version,

MAX would never win since 𝕄 is the maximum possible value!

On to Multiplayer Games

Unfortunately a scalar, like a rope, can be only pulled along two directions, +∞ and −∞.

However a point even in ℝ2 can be pulled in infinitely many directions. The setting we define is

as follows:

Say we have 𝑁 players 𝑝1, ⋯ , 𝑝𝑁 (𝑁 > 1) and an activity A that can be completed by a

sequence of moves. The activity can be completed in different ways and with each possible

completion, we associate an 𝑚-dimensional value (𝑚 > 1) that we’ll call 𝑌 ∈ ℝ𝑚. The players

take turns in making the moves. With each 𝑝𝑖, we also associate a direction vector 𝑣𝑖 ∈ ℝ𝑚 and

𝑝𝑖 ’s goal in making the moves is to maximize the component of 𝑌 along 𝑣𝑖. In other words, 𝑝𝑖

wants to maximize the dot product 𝑌 ∙ 𝑣𝑖. Under optimal play from each player, 𝑌 evaluates to

the minimax value 𝕄 (we show below how this is computed). Under normal play, the difference

between 𝑌and 𝕄 is computed and its component evaluated along each 𝑣𝑖. The payoff for 𝑝𝑖 is

(𝑌 − 𝕄) ∙ 𝑣𝑖 and the winner is the player with the largest payoff. Further, the players can be

ranked by their payoffs.

Figure 1: A 3-player game

The figure above illustrates this with 3 players (and associated direction vectors 𝑣1, 𝑣2and 𝑣3)

with final values being evaluated on the plane (𝑁 = 3, 𝑚 = 2). One of these is the minimax

value (indicated by Y0 in the figure). The dashed lines demarcate the plane into regions of

victory for each player. Thus if the final value is

● a or b ⇒ 𝑝1 is the winner

● c ⇒ 𝑝2 is the winner

● d ⇒ 𝑝3 is the winner

● e ⇒ 𝑝1and 𝑝2 are joint winners

● f ⇒ 𝑝2and 𝑝3 are joint winners

● g ⇒ 𝑝1 and 𝑝3 are joint winners

● Y0 ⇒ its a 3-way tie.

Computation of minimax value

We assume that the players make their moves in order 𝑝1, ⋯ , 𝑝𝑁 , 𝑝1, ⋯ with 𝑝1making the first

move. As in the two-player version, we use a game tree to represent the moves of the players

(see [3] for an illustration). The nodes of the tree correspond to the different stages of the

partially completed activity. The root node represents the start of the activity and the edges

denote the possible moves a player can make. Each node is labelled with the player whose turn

it is to play from that position. We also label each node with a (𝑚-dimensional) value. This is the

minimax value associated with the position corresponding to that node. In other words, this is

the value the activity would evaluate to under optimal play starting from that position. This value

is computed in the following way.

The terminal node is assigned the value of the completed activity. These values are then

backed up the tree level by level. Given an internal node labelled 𝑝𝑖, suppose its 𝑘 children have

been assigned values 𝑦1, ⋯ , 𝑦𝑘. 𝑝𝑖 will make the move that maximizes the component of the

final value along 𝑣𝑖. In particular, if 𝑦𝑗 ∙ 𝑣𝑖 = 𝑚𝑎𝑥(𝑦1 ∙ 𝑣𝑖, ⋯ , 𝑦𝑘 ∙ 𝑣𝑖), then the value at this node is

𝑦𝑗. As in the two-player version, the value at the root node is 𝕄.

Sounds simple right! Well, there’s small glitch here. Namely the uniqueness of the values that

bubble up the tree. While the maximum of a set of numbers is unique, the same cannot be said

when we are computing the maximum w.r.t. a vector. In other words, there may be several

values whose dot product with 𝑣𝑖 is the same. Then the question arises, which value is backed

up? The only resolution I see here is to choose the direction vectors 𝑣𝑖 in such a way that the

scalars 𝑣𝑖 ∙ 𝑦 are distinct over all possible values 𝑦 of the completed activity.

Example 1: Here’s a simple 3-player game illustrating this scheme.

In the figure shown below, players 𝑝1, 𝑝2, 𝑝3 take turns entering values (0, 1 or 2) in the circles.

The activity is completed when all 4 circles are filled. The triangular faces and the outer face are

then filled with numbers 0, 1 or 2. The number in a face is the sum of the numbers in its vertices

mod 3. The final value is the point (𝑛0, 𝑛1, 𝑛2) ∈ ℝ3 where 𝑛𝑖 is the number of faces labeled

𝑖, 𝑖 = 0, 1, 2. The goals of 𝑝1, 𝑝2 and 𝑝3 are to maximize 𝑛0, 𝑛1 and 𝑛2 respectively (so their

https://en.wikipedia.org/wiki/Game_tree

direction vectors are (1, 0, 0), (0, 1, 0) and (0, 0, 1)).

An instance of such a play is shown in the figure on right. The players fill the circles numbered 1

to 4 (in that order) with values shown. The final value as we can see is (0, 2, 2).

To find 𝕄, we may assume by symmetry that the inner circle is filled last. If the 3 outer circles

sum pairwise to distinct values mod 3, then the outer face will be labeled 0 while any choice for

the last entry will lead to distinct labelings for the 3 inner triangles. This leads to a final value of

(2, 1, 1). If the pairwise sums are all the same, then 𝑝1 can ensure that all 4 faces are labelled 0

but this is clearly due to suboptimal play from 𝑝3 since 𝑝3 can ensure that at least one triangle is

labeled 2. Otherwise the pairwise sums are of the form (𝑥, 𝑥, 𝑦) where 𝑥 = 0, 1 or 2 and 𝑦 ≠ 𝑥. In

such a case 𝑝1chooses 3 − 𝑥 for the last entry so that the final (minimax) value is (2, 1, 1).

For the play above, the difference = (0, 2, 2) − (2, 1, 1) = (−2, 1, 1) and the payoffs for the

players are -2, 1 and 1. Thus in this case 𝑝2and 𝑝3are joint winners.

Avoiding the Computation of 𝕄

We have seen that finding 𝕄 is computationally intractable even for games of moderate

complexity. Surprisingly it’s possible to rank the players without explicitly calculating 𝕄. The

idea is to complete the activity 𝑁 times (instead of just once). Each player pulls along a different

direction vector in each run.

To make matters precise, say we have 𝑁 players and direction vectors 𝑣1, … , 𝑣𝑁. Let 𝑣 = ∑𝑣𝑖.

Suppose the activity values on 𝑁 completions are 𝕩1, … , 𝕩𝑁. If a player 𝑝 pulls along directions

𝑣1, … , 𝑣𝑁 in sequence, then net payoff for 𝑝 = ∑ (𝕩𝑖 − 𝕄) ∙ 𝑣𝑖 =𝑁
𝑖=1 ∑ 𝑥𝑖 ∙ 𝑣𝑖 − 𝕄 ∙ 𝑣𝑁

𝑖=1 .

The last term is common for all players and can be canceled out.

Let’s illustrate this with an example.

Example 2: Coloring a graph thrice

Players 𝑝1, 𝑝2, 𝑝3 label the vertices of a graph 0, 1 or 2. The order in which the vertices are

labeled is shown in red and the actual labels are in black. After all vertices are labeled, the

edges are colored 0, 1 or 2 where the color of an edge (u, v) = (label(u) + label(v)) mod 3.

The value at the end of the activity is the point (𝑛0, 𝑛1, 𝑛2) ∈ ℝ3 where 𝑛𝑖 is the number of edges

colored 𝑖, 𝑖 = 0, 1, 2. The direction vectors are 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0) and 𝑒3 = (0, 0, 1).

In each run the first player pulls along 𝑒1, the 2nd along 𝑒2 and the 3rd along 𝑒3 (i.e. the first

player wants to maximize the number of 0-edges…).

In the 3 runs, the players play in sequence (𝑝1, 𝑝2, 𝑝3), (𝑝3, 𝑝1, 𝑝2), (𝑝2, 𝑝3, 𝑝1).

From the figure above, we see that the final values in the 3 runs are (2, 2, 2), (3, 0, 3) and

(0, 3, 3).

Then net payoff for 𝑝1 = 2 + 0 + 3 − 𝕄 ∙ 𝑒 = 5 − 𝕄 ∙ 𝑒 where 𝑒 = 𝑒1 + 𝑒2 + 𝑒3 = (1, 1, 1).

Similarly, net payoff for 𝑝2 = 2 + 3 + 0 − 𝕄 ∙ 𝑒 = 5 − 𝕄 ∙ 𝑒 and

Net payoff for 𝑝3 = 2 + 3 + 3 − 𝕄 ∙ 𝑒 = 8 − 𝕄 ∙ 𝑒 ⇒ 𝑝3 wins.

and we didn’t have to compute 𝕄 for that!

Comparison to the Two-player Game

We close this article with some practical issues that arise when designing multiplayer games.

Choice of direction vectors: The multiplayer game is defined by the activity, the moves that

complete it and the function mapping each completion to a value. However the direction vectors

define the incentives for the players in completing the activity. In the two-player game, the

directions are usually along the positive and negative X-axis and 𝕄 is a function of the rules for

making the moves. In the multiplayer version, 𝕄 depends additionally on the direction vectors.

In Figure 1, we showed the region of victory for each player in a 3-player game. Thus ideally the

directions should be chosen in such a way that there are roughly the same number of values in

each region. In practice enumerating all final values is infeasible. So one solution is to simulate

some game completions and use the resulting values to define the direction vectors.

There are also practical considerations in choosing the direction vectors. A goal of maximizing a

component of the final value is more comprehensible to a player than maximizing along a

direction that is a function of the components. For this reason alone, it’s usually a good idea to

choose the direction vectors to be along the coordinate axes.

Approximation of 𝕄: We have already seen the complexity of computing 𝕄 in the two-player

case. The multiplayer version is no different and fast heuristics are desirable for good

approximations to this value. For instance, a version of alpha-beta pruning for multiplayer

games would allow us to evaluate 𝕄 for games of greater depth.

Collusions: In the two-player version, one woman’s gain is another man’s loss. What we mean

by this is that the choice of directions ensures that any move that’s good for a player is

necessarily bad for the opponent. In contrast, in the multiplayer version, two players can collude

against a third party to curtail his chances of winning. Detecting such collusions is another

challenge faced in a multiplayer game.

Multiple optimal play: In the two-player version, optimal play from one and sub-optimal play from

the other will ensure a win for the former. However in the multiplayer game, the question of

winner arises if two players play optimally but the others play sub-optimally.

Cooperative games: Games can be cooperative when the direction vector is same for all

players. In this case, the players cooperate in completing the activity with the goal of maximizing

the final value along the common direction. In such a situation, the question arises as to how the

contribution to the final value is apportioned among the players.

References

[1] Activity based gaming: LinkedIn article, https://www.linkedin.com/pulse/activity-based-

gaming-sarang-aravamuthan

[2] “e-Valuate: A Two-player Game on Arithmetic Expressions”, Sarang Aravamuthan and

Biswajit Ganguly, CoRR abs/1202.0862: (2012).

[3] Artificial Intelligence: A Modern Approach (3rd ed.), Chapter 5, Stuart Russell and Peter

Norvig, Pearson education

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://www.linkedin.com/pulse/activity-based-gaming-sarang-aravamuthan
https://www.linkedin.com/pulse/activity-based-gaming-sarang-aravamuthan
https://arxiv.org/pdf/1202.0862v4.pdf

